Pronóstico de caudales medios mensuales del rio caplina, aplicando redes neuronales artificiales (rna) y modelo autorregresivo periódico de primer orden par (1)

  • Pino Vargas Edwin y Cols.
Palabras clave: Cuenca Caplina, Redes Neuronales Artificiales, Series de Tiempo.

Resumen

El rio Caplina es el principal tributario de la cuenca hidrográfica del mismo nombre; tiene una extensión de 4 239,09 km2, esto hace que sea una de las principales fuentes de abastecimiento de agua para distintos usos en la ciudad de Tacna. Por esta razón diversas entidades se han interesado en conocer la disponibilidad hídrica actual y futura del rio Caplina, ya que conocer dichos valores es de fundamental importancia para el planeamiento y manejo de los sistemas de recursos hídricos. Los modelos estocásticos han sido durante largo tiempo, la alternativa más común en la predicción de caudales. Actualmente, las herramientas de computación inteligente como las redes neuronales artificiales, especialmente las redes multi-capas con algoritmo de retro-propagación. En este contexto, la actual investigación centro sus esfuerzos en la aplicación de las redes neuronales a la predicción de los caudales medios mensuales del río Caplina-Estación Bocatoma Calientes, desarrollo de modelos de redes neuronales a partir de datos de caudales, precipitación y evaporación, así como la evaluación de la capacidad de desempeño frente a modelos estocásticos. De esta manera, se desarrollaron 10 modelos de redes neuronales artificiales con distintas arquitecturas, cuyo entrenamiento se realizo con un primer subconjunto de datos correspondientes al periodo 1939 – 1999, y su validación con un segundo subconjunto de datos del periodo 2000 – 2006. Los modelos de redes neuronales artificiales mostraron comparativamente mejor desempeño en materia de predicción frente a un modelo autorregresivo periódico de primer orden PAR (1).

Publicado
2019-01-12
Sección
ARTÍCULOS ORIGINALES

Artículos más leídos del mismo autor/a

Nota: Este módulo requiere de la activación de, al menos, un módulo de estadísticas/informes. Si los módulos de estadísticas proporcionan más de una métrica, selecciona una métrica principal en la página de configuración del sitio y/o en las páginas de propiedades de la revista.