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Abstract  

  

This paper presents a new inexact proximal method for solving monotone variational inequality problems with a 

given separable structure. The resulting method combines the recent proximal distances theory introduced by 

Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed 

to solve convex optimization problems. This method extends and generalizes proximal methods using Bregman, 

Phi-divergences and Quadratic logarithmic distances. Taking mild assumptions we prove that the primal-dual 

sequences produced by algorithm is well-defined and converge to optimal solution of the variational inequality 

problem. Furthermore, we show some numerical experiments, for the particular case to solve convex 

optimization problem, showing that the algorithm is perfectly implementable.  

  

Keywords: Inexact proximal method, variational inequality, separable structure, proximal distances.  

  

Resumen  

  

En este artículo presentamos un nuevo método proximal inexacto para resolver problemas de desigualdad 

variacional monótono con una estructura separable. El método resultante combina la reciente teoria de 

distancias proximales introducidas por Auslender y Teboulle (2006) con un método de descomposición proximal 

dado por Chen y Teboulle que fue propuesto para resolver problemas de optimización convexa.  

Este método extiende y generaliza métodos proximales usando distancias de Bregman, Phi-divergencias y 

logaritmo cuadrático, Asumiendo hipotesis adecuadas probamos que la sucesión primal-dual generada por el 

algoritmo está bien definido y converge a la solución óptima de un problema de desigualdad variacional. 

Además presentamos algunos resultados computacionales para el caso particular de resolver problemas de 

optimización convexa, mostrando asi que el algoritmo es perfectamente implementable.  

  

Descriptores: Método proximal inexacto, desigualdad variacional, estructura separable, distancias  

proximales.  

  

1. Introduction  

  

Le 𝑇: ℝ𝑛 × ℝ𝑝 ⇉ ℝ𝑛 × ℝ𝑝 be a maximal monotone  

operator and let  

  

Ω ≔ {(𝑥, 𝑧) ∈ 𝒞̅  × 𝒦̅  ∶ 𝐴𝑥 + 𝐵𝑧 = 𝑏}          (1)  

  

where 𝒞̅ ⊂ ℝ𝑛 and 𝒦̅ ⊂ ℝ𝑛 are nonempty open convex 

sets, 𝒞̅  and 𝒦̅  denote the closure (in the euclidean 

topology) of 𝒞̅ and 𝒦̅ respectively, 

 and 𝑏 ∈ ℝ𝑚. This paper  

considers the variational inequality problem 𝑉𝐼(Ω, 𝑇) 

with separate structure:  

  

Find a pair (𝑥∗,𝑧∗) ∈ Ω and   
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such that  

  

        (2)   

  

where  〈⋅,⋅〉 denotes the inner product in the 

appropriate Euclidean space.  

  

Then, it can be easily verified that (𝑥∗, 𝑧∗) solves 𝑉𝐼(Ω, 

𝑇) if and only if there exists 𝑦∗ ∈ ℝ𝑚 , playing the role 

of a dual multiplier for the constraint (1) such that 

 solves the following primal-dual 

formulation of:  

  

Find  and  

 such that for all (𝑥, 𝑧) ∈ 𝒞̅  × 𝒦̅   we have  

  

       
       𝐴𝑥∗ + 𝐵𝑧∗ = 𝑏.  (4)  

  
Various decomposition methods that exploit the 

special structure of the problem have been proposed. 

Some examples of such methods are:  alternating 

directions method of multipliers [4,13,9,10] partial 

inverse of Spingarn method [8,14,15,19,18]. See also 

the recent works [11,12] and references therein.  

  

For solving the primal-dual formulation of 𝑉𝐼(𝑇, Ω), we 

propose a inexact proximal decomposition algorithm 

using proximal distances, which combine the recent 

proximal distances theory introduced by Auslender 

and Teboulle in [3] with the Entropic Proximal 

Decomposition Method proposed in [2]. This scheme 

is in fact an extension of Chen and Teboulle method's 

[7] (which was developed for solving convex 

programs with a particular separable structure) and 

the Entropic Proximal Decomposition Method.   

  

The extension is in two directions:  

Firstly we consider the more general framework of 

variational inequalities with convex constraints and 

secondly we use here the recent proximal distance 

theory introduced by Auslender and Teboulle [3] in 

place of the usual quadratic proximal theory (for the 

case of Chen and Teboulle method's) and 

Logarithmic Quadratic proximal theory (for the case 

of the Entropic Proximal Decomposition Method).  

  

The rest of the paper is organized as follows. In 

Section 2 we recall basic notions and properties on 

set-valued maps, proximal distances, and induced 

proximal distances. The inexact proximal 

decomposition method for variational inequalities is 

presented in Section 3. Then, the well-definition and 

convergence of the new method is proved in Section 

4 and 5 respectively. In Section 6 we present some 

numerical experiments. Finally, some conclusions are 

made in Section 7.  

   

2. Basic definitions  

  

Given a subset 𝒞̅ ⊂ ℝ𝑛, we denote by 𝑖𝑛𝑡(𝒞̅) its interior 

and  𝒞̅   its closure. A point-to-set mapping (or 

multifunction) 𝐴 ∶ ℝ𝑛 ⇉ ℝ𝑛 is an operator which 

associates with each point 𝑥 ∈ ℝ𝑛  a set  𝐴(𝑥) ⊆ ℝ𝑛. 

The domain and the graph of a point-to-set valued 

map 𝐴 are defined as 𝐷(𝐴) ≔ {𝑥 ∈ ℝ𝑛 ∶ 𝐴(𝑥) ≠ ∅} and   

𝐺𝑟(𝐴) ≔ {(𝑥, 𝑦) ∈ ℝ𝑛 × ℝ𝑛 ∶ 𝑦 ∈ 𝐴(𝑥)} respecti- vely. A 

point-to-set 𝐴 is said to be monotone if for all  

𝑥, 𝑥′ ∈ 𝑑𝑜𝑚(𝐴), 〈𝑦′ − 𝑦, 𝑥′ − 𝑥〉 ≥ 0,       ∀ 𝑦′ ∈ 𝐴(𝑥′),  ∀ 𝑦 ∈ 

𝐴(𝑥). 𝐴 is said strictly monotone is the inequality above 

is strict for all 𝑥, 𝑥′ ∈ 𝑑𝑜𝑚(𝐴) with 𝑥 ≠ 𝑥′. A monotone 

operator is said to be maximal when its graph is not 

properly contained in the graph of any other monotone 

operator.  

  

A function 𝑑 ∶ ℝ𝑛 × ℝ𝑛 ⟶ ℝ+ ∪ {+∞} is called a proximal 

distance with respect to an open nonempty convex set 

𝒞̅ ⊂ ℝ𝑛 if for each 𝑦 ∈ 𝒞̅; 𝑑(⋅, 𝑦) is proper, closed, 

convex on ℝ𝑛 and continuously differentiable on 𝒞̅; 

𝑑𝑜𝑚 𝑑(⋅, 𝑦) ⊂ 𝒞̅  and 𝑑𝑜𝑚 𝜕1𝑑(⋅, 𝑦) = 𝒞̅, where 𝜕1𝑑(⋅, 𝑦) 

denotes the classical subgradient map of the function 

𝑑(⋅,𝑦)  with respect to the first variable;  

𝑑(⋅, 𝑦)  is coercive on ℝ𝑛 e $𝑑(𝑦, 𝑦) = 0.  

  

Given a proximal distance 𝑑, a function 𝐻 ∶ ℝ𝑛 × 

ℝ𝑛 ⟶ ℝ+ ∪ {+∞}  is called the induced proximal  

distance to 𝑑 if there exists 𝛾 ∈ (0,1] with 𝐻 a 

finitevalued on 𝒞̅  × 𝒞̅ and such that for each 𝑎, 𝑏 ∈ 𝒞̅, 

we have that 𝐻(𝑎, 𝑎) = 0; for each 𝑐 ∈ 𝒞̅ , 𝐻(𝑐,⋅) has 

level bounded sets on 𝒞̅ and 〈𝑐 − 𝑏, ∇1𝑑(𝑏, 𝑎)〉 ≤ 𝐻(𝑐, 

𝑎) − 

𝐻(𝑐, 𝑏) − 𝛾𝐻(𝑏, 𝑎).  

  

Finally, we write (𝑑, 𝐻) ∈ ℱ+(𝒞̅ ) if 𝑑 and 𝐻 are proximal 

distance and induced proximal distance  

respectively and  
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(a) ∀ 𝑦 ∈ 𝒞̅  and ∀ {𝑦𝑘} ⊂ 𝒞̅ bounded with lim𝑘 ⟶ +∞ 

𝐻(𝑦, 𝑦𝑘) = 0,  we have  

lim𝑘 ⟶ +∞ 𝑦𝑘 = 𝑦.  

  

(b) ∀ 𝑦 ∈ 𝒞̅  and ∀ {𝑦𝑘} ⊂ 𝒞̅ such that lim𝑘 ⟶ +∞ 𝑦𝑘 = 

𝑦, we obtain  lim𝑘 ⟶ +∞ 𝐻(𝑦, 𝑦𝑘) = 0.  

  

Some classes of proximal distances are: Bregman 

distances, proximal distances based on 

𝜑divergences, self-proximal distances, and distances 

based on second order homogeneous proximal 

distances and were given by Auslender and Teboulle 

in [3].  

  

  

3. The proximal decomposition algorithm with 

proximal distances (PDAPD)  

  

Throughout this section we make the following 

standing assumption for the variational inequality 

problem 𝑉𝐼(𝑇, Ω).  

  

Assumptions 𝓐  

  

(𝒜1)  Problem 𝑉𝐼(𝑇, Ω) has a solution.  

(𝒜2)  𝑑𝑜𝑚 𝑇 ∩ (𝒞̅ × 𝒦̅) ≠ ∅.  

Remark 1. This assumptions were suggested by 

Auslender and Teboulle (see [2], page 35), to derive 

well-definition of the Entropic Proximal 

Decomposition Method and are classical conditions 

given in proximal algorithms for variational inequality 

problems, see [2,1,6,5].  

Now, we propose an algorithm to solve the problem 

(3) - (4). In this algorithm we use the class of proximal 

distances  

 ℱ+(𝒦̅ ) and given 𝜇 > 0 , 𝜇′ > 0 we define the following 

functions:  

  

             (5)  

 ,            (6)  

,           (7)    

,           (8)  

  

It is easy to check that (𝑑, 𝐻) ∈ ℱ+(𝒞̅ ) and 

ℱ+(𝒦̅ ) for the same value of 𝛾 and 𝛾′ respectively.  

  

The algorithm, which will be called Proximal 

Decomposition Algorithm with Proximal Distances 

(PDAPD) is as follows:  

  

(PDAPD) Algorithm  

  

Step 0. Choose two pairs  

ℱ+(𝒦̅ ) and define  given by (5)-(6) and  

(7)-(8) respectively. Take {𝜆𝑘} a sequence of positive 

scalars. Start with arbitrary points (𝑥0,𝑧0,𝑦0) ∈ 

and generate 

the  sequences  and   

(𝑒1𝑘+1,𝑒2𝑘+1) ∈ ℝ𝑛 × ℝ𝑝 as follows:  

  

Step 1. For 𝑘 = 0,1,2,⋯, calculate 𝑝𝑘+1 ∈ ℝ𝑚 by   

  

 𝑝𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑏).            (9)  

   

Step 2. Find  

ℝ𝑛 × ℝ𝑝 and 𝑔𝑘+1 ≔ (𝑔1𝑘+1,𝑔2𝑘+1) ∈ 𝑇(𝑥𝑘+1,𝑧𝑘+1)  

such that     

  

        𝑔1𝑘+1 + 𝐴𝑇𝑝𝑘+1 + 𝜆−𝑘1∇1𝑑(𝑥𝑘+1,𝑥𝑘) = 𝑒1𝑘+1,    (10) 

  

  

where (𝑒1
𝑘+1,𝑒2

𝑘+1) is an approximation error which 

satisfies some conditions given.  

  

Step 3. Compute   

  

𝑦𝑘+1 = 𝑦𝑘 + 𝜆𝑘(𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑏).        (12)  

  

Stopping Criterion: If 𝑥𝑘+1 = 𝑥𝑘, 𝑧𝑘+1 = 𝑧𝑘 and 𝑦𝑘+1 = 𝑦𝑘 

then stop. Otherwise to do 𝑘 ≔ 𝑘 + 1, and go to Step 

1.  

  

Remark 2. Moreover, as we are interested in the 

asymptotic convergence of the method, we assume in 

each iteration that 𝑥𝑘+1 ≠ 𝑥𝑘, 𝑧𝑘+1 ≠ 𝑧𝑘  and 𝑦𝑘+1 ≠ 𝑦𝑘 for 

each 𝑘 = 1,2,…. Indeed, if 
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 for some , then 

 and then from  

(10)-(11) we have that (3)-(4) hold approximately, that 

is,  is an approximate solution of primal-

dual formulation of .  

  

4. Well-definition of (PDAPD) algorithm  

  

Before that we prove our existence result. We show a 

more general result of independent interest. For this 

consider a class of functions  

satisfying the following properties  

  

i)  is a closed proper convex function with 

 open,  

ii)  is differentiable on ,  

 iii)   

Here  denotes the recession function of , see [16] 

for definition. We denote by  the class of functions 

satisfying (i), (ii) and (iii).  

  

Remark 3. Note that for fixed   the 

functions  and   clearly satisfies 

properties i) - ii) when  and  are open. 

Moreover, It has been proven by the authors in [17] 

(see proof of Theorem 4.1) that  and ’ satisfy iii).   

  

Our existence result will be a consequence of the 

following general result whose proof is similar at the 

proof given by Auslender et al. for Proposition 2 in  

[1].  

  

Lemma 4.1 If  then the gradient mapping  is 

onto. Furthermore, let  be a maximal monotone  

map such that  and let  

  

  
  

Then there exists at least a solution  of the 

generalized equation:  which is unique if in 

addition  is supposed to be strictly convex on its 

domain.  

  

Due to Remark 3 we have to assume the following 

assumption:  

  

(  The proximal distances and  have open 

domains.  

  

Remark 4.  A large class of proximal distances satisfy 

this assumption. For example:  

  

   Separable Bregman distances:   

    

induced by where can be    

defined by (Burg entropy) or    

. It is clear that, in both cases,  

 is open.  

  

  Proximal  distances  based  on 

divergences defined by  

  with  .  

When  is called divergence 

proximal distance and  is open for  

.   

When  and   

with  is 

called second order homogeneous proximal 

distance  (also  known  as  log-

quadratic proximal distance) and clearly 

 is open.  

Theorem 4.2 Assuming the assumptions ( ) ).    

For  any   

there exists a unique point   

satisfying (10)-(11) with .  

  

Proof.  Let   and   

. Then  and  are strictly monotone 

operators because  and  are strictly convex 

functions. This implies strict monotonocity of  

.   

Since  is maximal monotone and 
, by Lemma 4.1 we have that  has a zero in 

, which is unique by strict monotonicity. We call 

this zero . Thus, it is clear that  

(10)-(11) hold. Now, we have to show that  

belongs to . By Definition,  

, and since 

 we obtain that .  

  

  

5. Global convergence of (PDAPD) algorithm  
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In this section, under appropriate assumptions, we 

establish the global convergence of the PDAPD.  

  

Assumptions 𝓑.  

  

(ℬ1)  Given the parameters 𝜇 > 0, 𝜇′ > 0, defined in            

(5) and (7) respectively, the sequence {𝜆𝑘}           

satisfies  

       𝜂 < 𝜆𝑘 < 𝑐  − 𝜂          (13)         

where 𝜂 ∈ (0, 𝑐 /2)  with 𝑐  ∶= min  and         

        𝛾, 𝛾′ are positive constants related to 𝐻  and 𝐻′            

respectively.  

  

(ℬ2)  Given the sequences {(𝑥𝑘, 𝑧𝑘)}  generated by           

(PDAPD) algorithm, assume additional           

condition on the sequences of errors           

We suposse that  

    

           
  

        ,              (15)  

  

Remark 5. Assumptions (ℬ1)-(ℬ2)  will be used to 

ensures the convergence of the method. Observe 

that the interval (𝜂, 𝑐  − 𝜂) depends of 𝜇 and 𝜇′ which 

are arbitrary. The condition (ℬ2) is a kind of 

conditions for the errors sequences given in the 

literature. Condition (14) might appear somewhat 

unnatural since it involves the iterates 𝑥𝑘 and 𝑧𝑘 

which are apriori unknown. However, as it was 

noticed for Auslender in [2] p. 10., (14) is easily 

enforceable in practice, and also implied by the 

more  

easily verified condition  

  

        ,      

            

which is satisfied in particular when 𝑒1
𝑘 = 0, 𝑒2

𝑘 = 0 

for each 𝑘 when 𝒞̅  and 𝒦̅ or 𝑑𝑜𝑚 𝑇 is bounded (in 

addition, with (15).  

  

The following convergence analysis follows a line of 

argument similar to that given in [2].   

  

Theorem 5.1 (Global convergence). Consider the 

variational inequality problem 𝑉𝐼(𝑇, Ω) and suppose 

Assumptions (𝒜1) − (𝒜3) and (ℬ1) − (ℬ2) hold. Let 

 be a proximal and  

induced proximal distances and let  be 

the sequence generated by PDAPD, then the 

sequence   globally 

 converges  to   with  (𝑥∗,𝑧∗)  solution of 

𝑉𝐼(𝑇, Ω).  

   

6. Numerical experiments  

  

In this section we show numerical experiments in the 

case that the operator 𝑇 is defined like 𝑇 = (𝜕𝑓, 𝜕𝑔). 

To this case the variational inequality problem 𝑉𝐼(𝑇, Ω) 

becomes a minimization problem. Consider the 

problem following:  

  

Example 6.1  

  

  min (𝑥1 − 1)2 + (𝑥2 − 1)2 + (𝑧1 − 1)2 + (𝑧2 − 1)2 

{ 𝑠. 𝑡𝑜:                         𝑥1 + 2𝑥2 + 2𝑧1 − 𝑧2 = 4   

                                  −2𝑥1 + 𝑥2 + 𝑧1 + 𝑧2 = 1                                            

𝑥𝑖 ≥ 0, 𝑧𝑖 ≥ 0, 𝑖 = 1,2.   

The function 𝑓 + 𝑔: ℝ4 ⟶ ℝ defined by  

  

𝑓(𝑥1,𝑥2) + 𝑔(𝑧1, 𝑧2) 

= (𝑥1 − 1)2 + (𝑥2 − 1)2 + (𝑧1 − 1)2 

+ (𝑧2 − 1)2  

  

is proper continuous and convex. The optimal point is 

 with (𝑓 + 𝑔)(𝑥∗, 𝑧∗) = 0 and  

𝑦∗ = (0,0) is the optimum Lagrange multiplier  

associated to the equality constraints. In this case,  

  

   

 ,   , ,  

 𝒞̅  = ℝ2+, 𝒦̅  = ℝ2+.  

  

In this example, we take  

0, 𝜆𝑘 = 0.125 for each 𝑘 and an initial point  

.  

For examples 6.1 and 6.2, we choose three proximal 

distances given in the literature:  

  

1) Kullback-Liebler Bregman distance:  
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,  

  

2) Proximal -divergence distance  

, with , we  

have,  

.  

  

3) Second-order homogeneous proximal 

distance , with  

 

, we obtain   

  

 
  

Using the (PDAPD) algorithm with  and  

, we obtain the results shown in the Fig.(a).   

  

Furthermore, for this example  we show also results 

given using the Interior point algorithm with logarithmic 

barrier.   

Moreover, we can solve minimization problem for 

nondifferentiable functions, for example we consider 

this problem:  

  

Example 6.2  

  

  
  

The function  defined by  

  

  
is proper continuous and convex. Furthermore, the 

optimal point is  with optimal 

value .   

Consider  

,  

  

  
  

Fig.(a):  Numerical results  using proximal distances.   

  

( 𝑥 0 , 𝑧 0 , 𝑦 0 ) = ( ( 1 , 2 ) , ( 3 , 2 ) , ( 1 , 1 ) ) .   

Using the (PDAPD) algorithm with the proximal  

distances given in 1), 2) and 3) with  𝜎 = 0 . 001   and  

𝜈 = 0 . 01 ,   we obtain the results shown in the Fig.(b).   

  



Revista ECIPerú  Volumen 12, número 2  Diciembre 2015  

121  

  

  

In this example, we take 

 for each  and the starting point  

  

Fig.(b): Numerical results using proximal distances  

  

In the figures above, Fig.(a) and (b), we can see that 

the method of interior point is more efficient than our 

(PADPD) algorithm and in the non-differentiable case 

the algorithm (PADPD) using Logarithmic Qadratic 

distance is more efficient that using the class of 

Bregman and divergences distances.  

  

7. Results and discussion  

  

In Section 4, we introduce the (PADPD) Algorithm 

showing the well-definition of the algorithm, and in 

Section 5 we show its convergence. In  Section 6 we 

show numerical experiments to solve minimization 

problems that is a particular case when the operator 𝑇 

is defined like a subdifferential operator of convex 

functions.   

In the numerical experiments we note that the 

convergence of the method of Interior Point (in the 

differentiable case) is faster than our (PADPD) 

algorithm in the particular case given in example 6.1, 

and in the non-differentiable case (example 6.2) the 

convergence of the algorithm (PADPD) using 

Logarithmic Quadratic distance is faster than iself 

using the class of Bregman and 𝜑 −divergences 

distances. In future work we hope to show the 

convergence rate analysis of the algorithm and show 

computational results comparing with other existing 

algorithms in the literature.  

  

7. Conclusions  

  

The use of proximal distances in the (PDAPD) 

algorithm generalize the works of Chen and Teboulle 

method's and the Entropic Proximal Decomposition  

Method proposed in [2]. Assuming the assumptions  

(𝒜1) − (𝒜3) we prove in Section 4 that the iterations 

generated by the (PDAPD) algorithm are welldefined. 

In the literature there proximal algorithms using 

Bregman and Log-quadratic distances, see [2,7,17] to 

solve minimization problems, note that these 

distances are examples of proximal distances, see for 

example the work of O. Sarmiento et al. in [17]. In this 

paper we generalize proximal algorithms given in the 

literature but now focusing on solving problems of 

variational inequalities covering a wider field to a 

minimization problem.  
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