Efecto del extracto acuoso de la Ocimum *basilicnum I.* (albahaca) en el crecimiento bacteriano de Escherichia *coli*

Effect of aqueous extract of *Ocimum basilicnum I.* (basil) on bacterial growth of *Escherichia coli*

Jherson Calderon Mestanza¹, Elías A. Torres Armas²

CONSECUENCIA.
 Universidad Nacional Toribio Rodríguez de Mendoza.

DOI: https://doi.org/10.33017/RevECIPeru2013.0018/

Resumen

El presente estudio es de diseño de investigación experimental, completamente aleatorizado con 4 tratamientos y 1 grupo testigo, con 3 repeticiones. Cuyo objetivo general fue determinar el efecto antibacteriano del extracto acuoso de albahaca (*Ocimum basilicum I.*) en el crecimiento bacteriano de *Escherichia coli*, a fin de dar el sustento científico al conocimiento popular. Se trabajó en una muestra constituida por 15 placas petri con cepas de *Escherichia coli* y material vegetal hojas de albahaca (*Ocimum basilicum I.*) en fresco. Los resultados muestran un efecto positivo de la actividad antibacteriana para las dosis de 5g, 10g y 20g del extracto acuoso de albahaca (*Ocimum basilicum I.*) en el crecimiento bacteriano de *Escherichia coli*, cuyo efecto antibacteriano para la dosis de 5g de extracto acuoso de albahaca (*Ocimum basilicum I.*) fue de 38 %, para 10g fue de 43.5 %, y para 20g fue de 46.5 %. En conclusión, el crecimiento bacteriano de *Escherichia coli* disminuye significativamente por efecto de las tres dosis (5g, 10g y 20g) de extracto acuoso de albahaca (*Ocimum basilicum I.*) procedente de la comunidad de Taquia de la Región Amazonas; siendo la dosis de 20g la que tuvo mayor actividad antibacteriana.

Descriptores: Extracto acuoso de Ocimum basilicum I., actividad antibacteriana en Escherichia coli.

Abstract

This study is of research design experiment, completely randomized with 4 treatments and 1 control group, with 3 repetitions. Whose overall objective was to determine the antibacterial effect of aqueous extract of basil (Ocimum basilicum I.) in bacterial growth of Escherichia coli, in order to provide scientific support to popular knowledge. Worked on a sample of 15 petri dishes with strains of Escherichia coli and plant material basil (Ocimum basilicum I.) Fresh. The results show a positive effect of antibacterial activity at doses of 5g, 10g, and 20g water extract of basil (Ocimum basilicum I.) On the growth of Escherichia coli bacteria whose antibacterial effect dose aqueous extract 5g basil (Ocimum basilicum I.) was 38% for 10g was 43.5%, and 46.5% was 20g. In conclusion bacterial growth of Escherichia coli significantly reduces the effect of three doses (5g, 10g and 20g) of aqueous extract of basil (Ocimum basilicum I.) community from Turning Lady of the Amazon Region, being the 20mg which had higher antibacterial activity.

Keywords: Aqueous extract of Ocimum basilicum I., antibacterial activity in Escherichia coli.

1. Introducción.

Desde épocas remotas el hombre tuvo que aprender a vestirse, comer y curarse basado en su instinto debía seleccionar especies que eran consideradas comestibles, de aquellas medicinales y también tóxicas. Este aprendizaje le demandó largo tiempo, el cual fue transmitido de padres a hijos o formando parte de los ritos de brujos y hechiceros, ello motivó la aparición de los primeros chamanes [1]. Hoy en día la medicina natural tiene un auge sin precedentes en todo el mundo, estos conocimientos populares son hoy fuente de estudio en busca de nuevos conocimientos y medicamentos más efectivos con menos efectos secundarios. Según la OMS, el 80% de la población mundial recurre a la medicina natural para atender sus necesidades básicas de salud [2, 3].

En el Perú existen unas 20,000 especies de plantas a las que se les atribuyen propiedades medicinales [4], de las cuales 1,109 son plantas medicinales nativas, utilizadas por los grupos indígenas para cubrir sus necesidades de salud. Se estima que al menos el 80% de la población amazónica depende del uso de estas plantas para tratar sus problemas de salud. Los pueblos awajún y wampis distinguen más de 400 especies de plantas nativas para fines utilitarios de medicina, alimentos, etc. Sin embargo, dicha acción curativa en la mayoría de casos carece de un sustento científico [4].

Las personas que pertenecen a culturas diferentes pueden ofrecer información y orientar a los profesionales para recibir la clase de cuidado que desean o necesitan los demás. En la teoría de Leininger, cuidar es una acción y actividad dirigida a la asistencia, el apoyo o capacitación de otras personas o grupos. Para proporcionar cuidados de la mejor manera y de acuerdo con la cultura del cliente, el cual requiere la comprensión de los valores, las creencias y las prácticas específicas de la cultura del cliente [5].

En la actualidad los medicamentos modernos presentan con más frecuencia, una serie de contraindicaciones y efectos indeseables, lo que no sucedía al usar los remedios en su forma natural [3]. Agregado a esto, gran parte de la población no pueden acceder a la medicina convencional. En gran parte por sus costos elevados por lo que recurren a la compra de plantas medicinales [6].

La Región Amazonas posee una gran diversidad de plantas medicinales, la albahaca (*Ocimum*

basilicum I.) es una de ellas, la cual viene siendo usada en las comunidades de Bagua Chica, Colcamar, Lámud, y Longar por los agentes de la medicina tradicional para prevenir o curar: cólicos, para dilatar el cuello uterino en el parto, el calentamiento durante el parto y las infecciones del tracto urinario (ITU) [1]. Para la ITU, estas comunidades utilizan 3 ramas de albahaca en infusión y toman ¾ de tasa [7]. Esta planta es muy conocida por su aroma y por su uso como especia en la cocina [8]. Las hojas, flor y el tallo son sus partes más usadas [9, 10].

En la práctica popular la albahaca (Ocimum basilicum I.) se utiliza tradicionalmente para el tratamiento de las dispepsias, anorexia, oliguria, retención urinaria, edemas [10], dolor de estómago, flatulencias, estreñimiento, amigdalitis, faringitis, cáncer (especialmente de hígado) [11], antiespasmódico, antiinflamatorio. arritmias. insuficiencia coronaria, artiosclerosis. reumatoidea, afecciones catarrales y bronquiales, entre otras enfermedades [12]. Otros estudios le atribuyen propiedades: afrodisíaca, angina de pecho, antiemética, antipirética, enfermedades del riñón y vías urinarias [9], antiespasmódica, carminativa, diurética, cicatrizante, analgésica, antipirético, vertigoso, depresión, el insomnio, estimula la lactancia [7].

Además, se ha comprobado científicamente la actividad antibacteriana de la albahaca (Ocimum basilicum I.) [13]. Siendo Escherichia coli la más susceptible [14]. Sin embargo, queda en el vacío las dosis de aplicación y uso. Dicha suceptibilidad se mide con los diámetros de los halos de inhibición de crecimiento para compararla con la de un antibiótico conocido por su eficacia contra esta bacteria [15]. Se ha demostrado que Escherichia coli (E. coli) puede causar una variedad de enfermedades en el ser humano incluyendo: infecciones en vías urinarias, diarrea, entre otros [16, 17].

Durante el 2002 al 2010, en el Perú, se han reportado 1, 006,375 casos de enfermedades del sistema urinario, de los cuales: 189,094 son varones y 817,280 son mujeres. Para las infecciones intestinales un total de 1, 483,919 casos de los cuales: 695,581 son varones y 788,337 son mujeres [18]. Entre los años 2002 al 2010, en el departamento de Amazonas se han reportado 41,753 casos de enfermedades del sistema urinario, de los cuales: 10,089 son varones y 31,664 son mujeres. Para las enfermedades infecciosas

intestinales un total de 78,730 casos, de los cuales: 36,299 son varones y 42,431 son mujeres [19].

Las infecciones de vías urinarias es una de las infecciones más comunes que afectan al ser humano convirtiéndose en un problema de salud pública, entre sus agentes etiológicos tenemos a: Escherichia coli (el 88.9 %), Proteus spp. (5,1%), Klebsiella spp. (3,7 %), Enterobacter spp. (1%), (1%)Citrobacter spp. У Staphylococcus saprophyticus (0,3 %); en éste sentido las infecciones del tracto urinario (ITU) son las más comunes tanto en prevalencia como en incidencia. En el mundo ocurren al menos 150 millones de casos de ITU por año. El agente causal más frecuente es Escherichia coli [20, 21]. La ITU es 14 veces más frecuente en mujeres que en hombres. La infección se caracteriza por micción frecuente, ardor o dolor al orinar, la sensación de guerer orinar, dolor en la parte inferior del abdomen, dolor por encima del hueso púbico (en mujeres), una sensación de tener el recto lleno (en hombres), orina sanguinolenta o con mal olor, fiebre leve, una sensación general de temblor y fatiga [22, 23]. Esta frecuencia es aún mayor en la mujer embarazada. En el anciano la incidencia puede llegar al 20 a 50%, en la infancia el riesgo de padecer una infección del tracto urinario es de un 3% en las niñas y de un 1,1% en los niños, en los menores de 12 meses la incidencia es del 3.7% en niños y del 2% en niñas [24].

En el Perú las mujeres jóvenes son las más afectadas, con una frecuencia de 0,5 a 0,7 infecciones por año. Del total de las mujeres afectadas por una ITU, el 25% al 30% desarrollan infecciones recurrentes. La incidencia estimada de ITU en los hombres jóvenes con respecto a las mujeres de la misma edad es significativamente inferior: 5 a 8 infectados por 10,000. La ITU es una de las infecciones más frecuentes de la infancia. A los 7 años, aproximadamente, 8% de las niñas y 2% de los varones han tenido al menos un episodio de ITU. La prevalencia de ITU en el anciano es de 10% a 50% y es moderadamente más elevada en las mujeres [21]. Otro de los problemas de salud más graves que enfrentan los países subdesarrollados las enfermedades diarreicas. enfermedades son responsables de alrededor de 2 millones de muertes anuales y están muy relacionadas con las condiciones de vida de las personas, nivel educacional status su socioeconómico [25]. Los agentes etiológicos de la diarrea que predominan son Escherichia coli (40%), Shigella (10%), Campylobacter jejuni (3%),

Protozoos (5%) y virus (10%), mientras que en el 22% de las ocasiones aproximadamente no se aísla ningún patógeno [26].

Representando así una de las causas principales de morbilidad y mortalidad en los niños menores de 5 años. Se estima en este grupo de edad entre 750 y 1, 000 millones de episodios diarreicos y cerca de 5 millones de defunciones anuales por esta causa, o sea, unas 10 defunciones cada minuto [25]. Los niños menores de dos años son la población infantil con mayor susceptibilidad a la infección de ellos la mayor prevalencia se ha observado en lactantes [27]. Al igual que sucede con otros microorganismos la transmisión se lleva a cabo por la vía fecal-oral; por contacto con sus heces, consumo de agua y alimentos contaminados. Una vez que la bacteria alcanza la mucosa intestinal. comienza desencadenarse la producción de diarrea [16, 27].

Ante ésta situación nos preguntamos ¿cuál es el efecto antibacteriano del extracto acuoso de la albahaca (Ocimum basilicum I.) en el crecimiento bacteriano de Escherichia coli – Región Amazonas – 2012? Para lo cual la investigación se planteó como objetivo general determinar el efecto antibacteriano del extracto acuoso de la albahaca (Ocimum basilicum I) en el crecimiento bacteriano de Escherichia coli y como objetivos específicos: determinar la dosis efectiva antibacteriana de la albahaca (Ocimum basilicum I) en Escherichia coli y validar su uso medicinal (dosis antibacteriana).

2. Materiales Y Métodos.

Diseño de contrastación de la hipótesis: Investigación básica, experimental, de estímulo creciente, con diseño completamente aleatorizado, con 4 tratamientos y 1 grupo testigo, con 3 repeticiones [28], A, B, C, D, E: Grupos experimentales. T_{1:} 5g de extracto vegetal de Ocimum basilicum I., T_{2:} 10g de extracto vegetal de Ocimum basilicum I., T_{3:} 20g de extracto vegetal de Ocimum basilicum I., T_{4:} 180mg de gentamicina. Grupo testigo.

- La materia experimental fue constituida por 12 placas petri con Cepas de *Escherichia coli*, aisladas y proporcionadas por el Laboratorio de Referencia de la Dirección Regional de Salud de Amazonas.
- Materia en fresco vegetal de albahaca (Ocimum basilicum I.) recolectada en la localidad de Taquia, Chachapoyas de la Región Amazonas; donde es

utilizada para tratar infecciones por *Escherichia coli*, la cual fue identificada y clasificada por Biólogo Oscar Andrés, se incluyeron todas las hojas de 3 a 5 cm, frescas, de color verde y la planta de una altura de 20cm. Se excluyeron las hojas secas y aquellas que no cumplieron con las características indicadas.

Preparación de los extractos acuosos: Para eliminar los contaminantes patógenos no solo se requiere del lavado, sino también de la desinfección y tiene como fin disminuir la contaminación hasta los niveles permisibles. Para ello OMS utiliza hipoclorito de sodio (lejía) a diferentes concentraciones y tiempo de inmersión, dosis mínimas entre 0,5-2% y tiempo de inmersión de 5 minutos [30]. La suspensión acuosa fue preparada con 5g, 10g, y 20g, de material vegetal en 100ml de agua estéril [31]. Luego se impregnaron los discos de papel secante (de 6 mm de diámetro y 0,6 mm de grosor) con el extracto vegetal de albahaca (Ocimum basilicum I.) de las dosis de 5g, 10g, y 20g.

Se utilizó el método: Observación [28], técnica: Ensayo (evaluación de actividad antibacteriana) [29] e Instrumento: Guía de observación de actividad antibacteriana.

Estas fueron reactivadas a las 24 horas antes del experimento y colocadas a 37°C. Posteriormente se realizó el sembrado selectivo mediante la técnica de estrias sobre el medio de cultivo Agar Mc Conkey [32, 33].

Evaluación de la actividad antibacteriana: Se trabajó con 15 placas petri con cultivo invitro de Escherichia coli en agar MacConkey. Luego se impregnaron los discos de papel secante (de 6 mm de diámetro y 0,6 mm de grosor) con extracto vegetal de albahaca (Ocimum basilicum I.) en dosis de 5g, 10g, y 20g; los cuales fueron colocados en las placas petri, con cultivo invitro de Escherichia coli. Luego se incubo a una temperatura de 37 ºC durante 24 horas [33], al final se midio el diametro de los halos de inhibición de crecimiento bacterial (en caso de actividad) alrededor de los discos, medidos en milímetros (mm) mediante una regla, registrados en la guía de observación de actividad antibacteriana. Si el halo es mayor a 9 mm el resultado es positivo, si el halo midió entre 6-9 mm la actividad se considera intermedia o moderada y si el halo es inferior a 6 mm se considera negativo (sin actividad) [29].

Los datos fueron procesados con el paquete estadístico Statistical Package for Social Science

(SPSS) versión 15 en español, se calculó promedios de los tratamientos, desviación estándar, evaluación de supuestos del modelo del diseño experimental donde se encontró que existe evasión de supuestos, de modo que se usó la prueba de Kruskal-Wallis en reemplazo del análisis de varianza y la prueba C de Dunnett en reemplazo de Tukey y Dunnett. Los datos están presentados en tablas y gráficos.

3. Resultados Y Discusión.

Tabla 01:

Diámetro (mm) del halo de inhibición de crecimiento de bacteriano de Escherichia coli., por efecto de los extractos acuosos de Ocimum basilicum I.

Extracto	Diámetro				
Extracto	Observaciones			Total	
5g	9	9	10	28	
10g	10	11	11	32	
20g	11	12	11	34	
Testigo 1	26	26	21	73	

¹Testigo: 180mg gentamicina.

Fuente: Guía de observación de actividad antibacteriana.

En la tabla 01 se presenta los diámetros de los halos de inhibición bacteriano (mm) en cada placa petri de *Escherichia coli* con extracto acuoso de 5g, 10g, 20g de albahaca (*Ocimum basilicum I.*) y 180mg de gentamicina. Para el extracto acuoso de 5g de albahaca (*Ocimum basilicum I.*) el promedio inhibición bacteriano fue de 9.33mm, para el extracto acuoso de 10g de albahaca (*Ocimum basilicum I.*) el promedio fue de 10.67mm, para el extracto acuoso de 20g de albahaca (*Ocimum basilicum I.*) el promedio fue de 11.33mm en las tres repeticiones y para 180mg de gentamicina el promedio fue de 24.33mm.

El diámetro del halo de inhibición bacteriana para 5g de extractos acuosos de albahaca (*Ocimum basilicum I.*) es de 9mm, 9mm y 10mm, para de 10g extracto acuoso de albahaca (*Ocimum basilicum I.*) es 10mm, 11mm y 11mm, para 20g de extracto acuoso de albahaca (*Ocimum basilicum I.*) es 11mm, 12mm y 11mm, mientras que los producidos por los 180mg de gentamicina son de 26mm, 26mm y 21mm. También se observa que la dosis más eficaz de los extractos acuosos es la de 20g de albahaca (*Ocimum basilicum I.*). De todos los tratamientos ensayados la gentamicina fue el que

obtuvo mayor diámetro del halo de inhibición bacteriano.

La planta de albahaca es cultivada por los pobladores de la comunidad de Taquia, provincia Chachapoyas, Región Amazonas. ésta comunidad para su uso propio y comercialización. Tiene la siguiente taxonomía [34, 13, 1, 9]: Nombre científico: Ocimum basilicum I., División: Magnoliophyta Cronquist, Takht. & W. Zimm. Ex Reveal; Class: Magnoliopsida Brongn; Order: Solanales; Family: Lamiaceae; Genus: Ocimum I.

Los pobladores afirman utilizar la albahaca (Ocimum basilicum I.) para: Dolor y ardor al orinar, el cual es un síntoma clásico de la ITU. Fiebre y dolor de cabeza. Para la validación del uso medicinal antibacterial se determinó el porcentaje del efecto antibacteriano del extracto acuoso de albahaca (Ocimum basilicum I.) [15] a dosis de 5g, 10g y 20g con la siguiente fórmula y se presentan en la Tabla 02.

Media del diámetro del % de efecto inhibitorio = Media del hinhibión del extravto Media del diametro del halo de inhibición del control

En la Tabla 02 se presenta el porcentaje del efecto antibacteriano del extracto acuoso de albahaca (Ocimum basilicum I.) en el crecimiento bacteriano de Escherichia coli para las dosis de 5g, 10g, y 20g. El porcentaje del efecto antibacteriano del extracto acuoso de albahaca para la dosis de 5g es de 38 %, para la dosis de 10g es de 43.5 % y para la dosis de 20g es de 46.5 %.

Tabla 02: Porcentaje del efecto antibacteriano del extracto acuoso de albahaca (Ocimum basilicum I.) en el crecimiento bacteriano de Escherichia coli.

Extracto acuoso de albahaca	Porcentaje (%)		
5g	38.00		
10g	43.50		
20g	46.50		

Fuente: Datos de la tabla 1.

Análisis Estadístico del Diseño Experimental.

En la tabla 03 se presenta la media, desviación estándar, el error típico de la media del diámetro del halo de inhibición bacteriano (mm) de 5g, 10g y 20g de extracto acuoso de albahaca (*Ocimum basilicum I.*) y 180mg de gentamicina en el desarrollo bacteriano de *Escherichia coli*. Los resultados no

presentan evidencias de evasión de supuestos del modelo, el análisis de Kruskal-wallis reporto que existe por lo menos uno de los tratamiento significativamente diferente que los (p=0.020<0.05) y la prueba C-Dunnett reporta tres grupos homogéneos, el primero conformado por los tratamientos a base de albahaca 5g, 10g, 20 g, y el segundo conformado por el tratamiento a base de albahaca 10g y 20g y el tercer grupo a base de gentamicina que es el tratamiento control, esto último indica que el diámetro del halo de gentamicina es significativamente mayor a los de los halos de albahaca y en el caso de los tratamientos a base de albahaca el que tuvo mayor diámetro del halo fue la dosis de 20g de extracto acuoso de albahaca (Ocimum basilicum I.).

Tabla 03: Diámetro Promedio desviación V estándar del halo de inhibición bacteriano (mm) de los extractos albahaca (Ocimum acuosos de crecimiento basilicum 1.) en el bacteriano de Escherichia coli.

Extracto	Promedio	N	Desviación típica
5g	9.33c	3	.577
10g	10.67bc	3	.577
20g	11.33bc	3	.577
Testigo ¹	24.33a	3	2.887
Total	13.92	12	6.459

¹Testigo: 180mg gentamicina. *Fuente: Datos de la tabla 1.*

Para Fonnegra et al., 2007 [13] la albahaca es una hierba rica en aceites esenciales con propiedades antibacterianas comprobadas científicamente. Demostrándose la actividad antibacteriana de *Ocimum basilicum I.* (Albahaca) sobre *Escherichia coli* en los estudios realizados por la Biblioteca Digital de la Medicina Tradicional Mexicana, 2009 [14]; y Ceres, 1991 [35]. Sin embargo estos estudios no dan a conocer las dosis usada en sus investigaciones.

Según Rodríguez et al., 2009 [1] en la práctica popular en las comunidades de Bagua Chica, Colcamar, Lamud, y Longar; la *Ocimum basilicum I* (albahaca) es usada para curar y tratar la ITU. En la comunidad de Taquia de donde se recolectó la muestra vegetal los pobladores también lo utilizan para tratar y curar la ITU. Propiedad antibacteriana que se demuestra con los resultados obtenidos en esta investigación, ya que el halo inhibitorio del

crecimiento de *Escherichia coli* frente a los tratamientos con extractos acuosos de albahaca de 5g, 10g, y 20g nos dieron positivo los cuales se pueden apreciar en la tabla 01. Obteniendo el mejor resultado para la dosis de 20g de albahaca en comparación con las otras dosis ensayadas.

En la tabla 01 observamos el diámetro del halo de inhibición bacteriano (mm) sobre *Escherichia coli* por efecto del extracto acuoso de 5g, 10g, 20g de albahaca y 180mg de gentamicina. Para el extracto acuoso de 5g de albahaca (*Ocimum basilicum I.*) el promedio fue de 9.33mm, para el extracto acuoso de 10g de albahaca (*Ocimum basilicum I.*) el promedio fue de 10.67mm, para el extracto acuoso de 20g de albahaca (*Ocimum basilicum I.*) el promedio fue de 11.33mm y para 180mg de gentamicina el promedio fue de se de 24.33mm.

Estos resultados podemos compararlos con los encontrados por Chirinos et al., 2009 [36] el cual utilizó el aceite esencial de albahaca (Ocimum basilicum I.) blanca y morada sobre Escherichia coli, obteniendo un promedio de diámetro de inhibición bacteriana de 6,1mm para la albahaca (Ocimum basilicum I.) blanca y 3,6mm para albahaca (Ocimum basilicum I.) morada, para las dosis de 138,3 mg/ml para la albahaca (Ocimum basilicum I.) blanca y 356 mg/ml para la albahaca (Ocimum basilicum I.) morada. Se observó que los promedios de los diámetros de inhibición bacteriana del extracto acuoso de albahaca (Ocimum basilicum I.) obtenidos en éste estudio son mayores que los encontrados por Chirinos et al., 2009 [36] esto se debería a que las dosis usadas en su estudio son menores a las usadas en ésta investigación.

Para determinar si el halo de inhibición es positivo, intermedia y negativa(sin actividad) se utilizó la clasificación propuesta por Laporte, 2001 [29]. Dando un resultado positivo, para las dosis de 5g, 10g, y 20g de albahaca. La dosis de 20g de extracto acuoso de albahaca presentó mayor diámetro del halo de inhibición por lo tanto actividad antibacteriana contra *Escherichia coli* fue mayor, en comparación con las dosis de 5g y 10g de extracto acuoso de albahaca.

La actividad antibacteriana se midió con los diámetros de los halos de inhibición de crecimiento para compararla con la de un antibiótico conocido por su eficacia contra este tipo de bacterias según lo propuesto por De la Rosa et al., 2005 [15]. Demostrándose así las propiedades antibacteriales de la albahaca sobre *Escherichia coli*; coincidiendo

con lo propuesto por Fonnegra et al., 2007 [13] en su libro "Plantas medicinales aprobadas en Colombia" y en el estudio de Ceres, 1991 [35] titulado "Actividad antimicrobiana de plantas de uso medicinal en Guatemala". En el estudio realizado por Chirinos et al., 2009 [36] titulado "Obtención de aceites esenciales de albahaca (*Ocimum basilicum l.*) a partir de tejidos cultivados in vivo e in vitro" se demostró el efecto antibiótico de los aceites esenciales de la albahaca frente a *Escherichia coli*.

En la tabla 01 se aprecia el diámetro del halo de inhibición bacteriano (mm) de cada placa petri de Escherichia coli con extracto acuoso de 5g, 10g, 20g de albahaca y 180mg de gentamicina. Al realizar una comparación entre el diámetro del halo de inhibición del extracto acuoso de albahaca con el de la gentamicina, se observa que la actividad antibacteriana del extracto acuoso de albahaca es mucho menor al de la gentamicina, pero aun así no puede descartarse la presencia de actividad antibacteriana por parte del extracto acuosos de albahaca. Es posible inferir que en caso de aumentar la concentración del extracto acuoso podrán observarse halos con mayor diámetro. Lo trascendente es el hecho de haber identificado la existencia de actividad antibacteriana positiva para las dosis de 5g, 10g, y 20g de albahaca. De los tratamientos administrados la gentamicina (180mg) es la más eficaz de todos los tratamientos, esto se debe a que la gentamicina se encuentra como sustancia pura y la albahaca se encuentra en su Se obtuvieron diámetros de forma natural. inhibición bacteriano de 26 mm, 26 mm y 21mm, estos resultados son similares a los encontrados por De la Cruz et al., 1984 [37]; ya que obtuvo 23mm, 25mm, 25mm, 25mm y 26mm de diámetro de inhibición bacteriano frente a Escherichia coli.

Para Soto, 2001 [6] los medicamentos empleados en la medicina moderna, si es cierto que surten efectos rápidos y eficaces, también con frecuencia ocasionan en el organismo efectos secundarios, a veces hasta más graves que la enfermedad curada. Lo que no sucede según Stapelfeld, 2011 [3] al usar los remedios en su forma natural. Bajo este precepto, los tratamientos con albahaca pueden demorar, pero aparentemente son inocuos debido a su uso natural. Sin embargo deberia realizarse estudios de toxicidad a fin de completar el estudio.

En la tabla 02 se aprecia el porcentaje del efecto antibacteriano del extracto acuoso de 5g, 10g y 20g de albahaca (Ocimum basilicum I.) en el crecimiento bacteriano de Escherichia coli. El porcentaje del

efecto antibacteriano del extracto acuoso de albahaca para la dosis de 5g es de 38 %, para la dosis de 10g es de 43.5 % y para la dosis de 20g es de 46.5 %. De los tres porcentajes el más elevado fue de 46.5 %, el cual corresponde a la dosis de 20g de extracto acuoso de albahaca (Ocimum basilicum I.). Es posible inferir que en caso de aumentar la concentración del extracto acuoso observarse el incremento del porcentaje del efecto antibacteriano. Estos resultados son mayores a los encontrados por De la Rosa et al., 2005 [15] ya que su estudio obtuvo un 28% de efecto antibacteriano del extracto fluido de la planta Gordolobo (Gnaphalium spp).

Para continuar con la validación de la albahaca (Ocimum basilicum I.) se tuvo en cuenta el lugar de origen de la planta, cuya procedencia fue de la comunidad de Taquia, provincia Chachapoyas, Región Amazonas, la cual viene siendo cultivada por los pobladores de ésta comunidad para su propio uso y comercialización, esta planta se cosecha cuando se encuentra en floración, su tiempo de recolección fue en la mañana.

Se cultiva en suelos bien abonados y húmedos, con algo de sombra esto coincide con lo hallado por Fonnegra et al., 2007 [13], la temperatura de ésta zona varía entre 09 y 21°C según PROMPERÚ, 2012 [38].

4. Conclusiones.

Referencias.

- [1] M. Rodríguez et al. Estudio del Manejo de Plantas Medicinales en el Nororiente Amazónico Peruano para el Tratamiento de Enfermedades. Perú. Facultad de Enfermería de la Universidad Nacional Toribio Rodríguez de Mendoza (2009). 91.
- [2] Vásquez et al. Investigan potencial agroindustrial de 50 plantas medicinales nativas del norte peruano Disponible en: http://www.elcientifico.com/inicio/_C3VTD DatmVHPhVuTbS8mflWvMdVy8C3gBzaC X9iFkgA. (2010).
- [3] Stapelfeld *et al.* Plantas Medicinales. Disponible en: http://www.yinyangperu.com/la_biblia_de_l as_plantas_medicinales.htm. (2011).

- El crecimiento bacteriano de Escherichia coli disminuye significativamente por efecto de las tres dosis (5g, 10g y 20g) de extracto acuoso de albahaca (Ocimum basilicum I.) procedente de la comunidad de Taquia de la Región Amazonas.
- 2) A mayor dosis menor crecimiento bacteriano, es decir hay mayor inhibición del crecimiento de *Escherichia coli* con el estímulo creciente de los extractos acuosos de albahaca *(Ocimum basilicum I.)*; en este sentido la dosis de 20g del extracto acuoso de albahaca *(Ocimum basilicum I.)* es la que tuvo mayor actividad antibacteriana sobre el crecimiento bacteriano de *Escherichia coli*.
- 3) Se validó el uso medicinal de la albahaca (*Ocimum basilicum I.*) como antibacteriano en infecciones por *Escherichia coli*.

Agradecimientos.

Agradecemos la colaboración prestada por el personal adscrito al laboratorio de Bioquímica y Microbiología de la Facultad de Ingeniería y Ciencias Agrónomas de la Universidad Nacional Toribio Rodríguez de Mendoza, al personal de la organización CONSECUENCIA quienes colaboraron en el estudio.

- [4] MINSA Uso y consumo de algunas plantas medicinales puede provocar daños a la salud. Disponible en: http://isags-unasul.org/site/2011/09/espanol-peruminsa-advierte-que-uso-y-consumo-de-algunas-plantas-medicinales-puede-provocar-danos-a-la-salud/?lang=es. (2011).
- [5] F. Fernández. Bases históricas y teóricas de la enfermería: Modelo de Madeleine Leininger. Disponible en: http://ocw.unican.es/ciencias-de-lasalud/bases-historicas-y-teoricas-de-laenfermeria/materiales-de-clase-1/Enfermeria-Tema11(IV).pdf. (2005).
- [6] Soto O. Las plantas medicinales en el marco de una agricultura sostenible. Disponible en:

- http://www.herbotecnia.com.ar/c-public-001.html. (2001).
- [7] M. Rodríguez. Retos de Enfermería en la Cosmovisión Amazónica y el Uso de Medicina Tradicional. (2010). 114.
- [8] R. Ara Las 40 plantas medicinales más populares; una guía práctica y completa de sus virtudes terapéuticas y recetario. Editorial EDAF. España. (2000). 220.
- [9] F. García *et al.* Flora Etnomedicinal de la Región de Amazonas. (2009). 185.
- [10] PORTALFARMA, Albahaca. Disponible en: http://www.portalfarma.com/pfarma/taxono mia/general/gp000011.nsf/0/bf0ed888926 7bf7fc1256b670057fb4f/\$file/ALBAHACA. htm. (2001).
- [11] RDNATTURAL. Albahaca Disponible en: http://www.rdnattural.es/plantas-y-nutrientes-para-el-organismo/aceites-esenciales/albahaca-2/. (2011).
- [12] M. Arango Plantas medicinales. Editorial Botánica de interés médico. Colombia. Colombia. (2006). 227.
- [13] G. Fonnegra *et al.* Plantas medicinales aprobadas en Colombia. Segunda Edición. Editorial Universidad de Antioquia. Colombia. (2007). 371.
- [14] Biblioteca Digital de la Medicina Tradicional Mexicana, Albahaca (*Ocimum basilicum L.*). Disponible en: http://www.medicinatradicionalmexicana.u nam.mx/monografia.php?l=3&t=&id=7195. (2009).
- [15] M. De la Rosa et al. Actividad antimicrobiana del extracto fluido de la planta Gnaphalium spp (gordolobo). Revista Episteme. Dirección Institucional de Investigación e Innovación Tecnológica. Universidad del Valle de México: Rectoría Institucional. Volumen N° 8-9. (2006). 18.
- [16] Vidal et al, Escherichia coli enteropatógena (EPEC): Una causa frecuente de diarrea infantil. Disponible en: http://redalyc.uaemex.mx/redalyc/src/inici

- o/ArtPdfRed.jsp?iCve=48709108> ISSN 1405-2091. (2003).
- [17] Cordero et al. Diagnóstico de *Escherichia coli* Enterohemorrágica en niños con diarreas. Disponible en: http://redalyc.uaemex.mx/src/inicio/ArtPdf Red.jsp?iCve=211118136009> ISSN. (2006).
- [18] MINSA, Principales causas de morbilidad registradas en consulta externa. Disponible: http://www.minsa.gob.pe/estadisticas/esta disticas/Morbilidad/CEMacros.asp?00. (2010a).
- [19] MINSA. Principales causas de morbilidad registradas en consulta externa. Departamento de Amazonas. Disponible en:
 http://www.minsa.gob.pe/estadisticas/esta disticas/Morbilidad/CEMacros.asp?01. (2010b).
- [20] Arredondo et al. Etiología y tratamiento de infecciones de vías urinarias en niños. Disponible en: http://www.artemisaenlinea.org.mx/acervo/pdf/revista_enfermedades_infecciosas_pe diatria/2%20Etiologia%20y%20tratamiento .pdf. (2006).
- [21] J. Echevarría et al. Infección del tracto urinario y manejo antibiótico. Colegio Médico del Perú. Disponible en: http://redalyc.uaemex.mx/pdf/966/9662310 6.pdf. (2006).
- [22] C. Gisper *et al.* Diccionario de Medicina Océano Mosby. Editorial Océano. España. (2011).1567.
- [23] E. Figueroa Infección del tracto urinario. Disponible en: http://kidshealth.org/teen/en_espanol/infecciones/uti_esp.html. (2009).
- [24] B. Álvarez. Infecciones de vías urinarias en el Hospital Universidad del Norte. Disponible en: http://ciruelo.uninorte.edu.co/pdf/salud_uni norte/231/3_Infecciones%20de%20las%2 0vias%20urinarias.pdf. (2007).

- [25] G. Coutin et al. Morbilidad oculta por enfermedades diarreicas agudas en cuba. Disponible en: http://www.sld.cu/galerias/pdf/sitios/vigilan cia/coutin.pdf. (2006).
- [26] C. Page et al. Farmacología Integrada. Editorial Harcourt Brace. España. (1998). 555.
- [27] E. Vidal et al. Patogénesis molecular, epidemiología y diagnóstico de Escherichia coli Enteropatógena. Disponible en: http://redalyc.uaemex.mx/redalyc/src/inicio/ArtPdfRed.jsp?iCve=10649508 ISSN 0036-3634. (2007).
- [28] A. Tresierra. Metodología de la Investigación Científica. Editorial Biociencia. Trujillo, Perú. 2000. 165.
- [29] R. Laporte. Principios Básicos en investigación clínica. Segunda edición. Editorial Zeneca. España. (2001). 212.
- [30] L. Acosta de la Luz La Producción Agrícola de Plantas Medicinales en Cuba Garantía de Calidad en la Producción de Fitofármacos. Disponible en: http://www.herbotecnia.com.ar/c-public-011.html. (2006).
- [31] F. Barzaga *et al.* Efecto antiinflamatorio del Extracto Acuoso Liofilizado de *Ocimum tenuiflorum L.* en ratas. Disponible en: http://www.latamjpharm.org/trabajos/23/4/LAJOP_23_4_1_10_32V5Q337SP.pdf. (2004).
- [32] R. Granados Microbiología; bacteriología, medios de cultivo y bioquímicos, micología

- general, parasitología general. Editorial Parafino. España. (1998). 365.
- [33] Brooks, *et al.* Microbiología médica de Jawts, Melnick y Aldelberg. 17ava edición. Editorial Manual Moderno. México. (2001). 844.
- [34] B. Vanaclocha. Fitoterapia; vademécum de prescripción. Editorial MASSON Elsevier. España. (2003). 1097.
- [35] A. Ceres. Actividad antimicrobiana de plantas de uso medicinal en Guatemala. Disponible en: http://www.greenstone.org/greenstone3/nz dl;jsessionid=6C32678332B0D22DD2A99 B6030C0FC72?a=d&d=HASHa9287526d 39203650f9874.9.2.np&c=cdl&sib=1&dt=&ec=&et=&p.a=b&p.s=ClassifierBrowse&p.s a=. (1991).
- [36] M. Chirinos et al. Obtención de aceites esenciales de albahaca (*Ocimum basilicum I.*) a partir de tejidos cultivados in vivo e in vitro. Disponible en: http://saber.ucv.ve/ojs/index.php/rev_agro/article/view/131/109. (2009).
- [37] E. De la Cruz Monge *et al.* Sensibilidad a los antibióticos. Revista médica de Costa Rica. Universidad de Costa Rica. Volumen N° 486. (1984). 19.
- [38] PROMPERÚ. Chachapoyas. Disponible en:
 http://www.turismoperu.info/0/modulos/DE
 S/DES_VerFormaLlegarDestino.aspx?DE
 S=128&PFL=0. (2012).

E-mail: consecuencia-2009@hotmail.com allpachaki@hotmail.com